博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
堆和栈的区别
阅读量:6311 次
发布时间:2019-06-22

本文共 9395 字,大约阅读时间需要 31 分钟。

一.预备知识—程序的内存分配

一个由C/C++编译的程序占用的内存分为以下几个部分

1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。

2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。

3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域(.data), 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域(.bss)。 程序结束后由系统释放 

4、文字常量区—常量字符串就是放在这里的。 程序结束后由系统释放

5、程序代码区—存放函数体的二进制代码。

二.例子程序 

这是一个前辈写的,非常详细 

//main.cpp

int a = 0; //全局初始化区

char *p1; //全局未初始化区

main()

{

int b; //

char s[] = "abc"; //

char *p2; //

char *p3 = "123456"; //123456\0在常量区,p3在栈上

static int c =0 //局部静态初始化区

p1 = (char *)malloc(10);

p2 = (char *)malloc(20);

//分配10字节和20字节都在堆上

strcpy(p1, "123456"); //123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。

}

 

三.堆和栈的理论知识 

2.1申请方式 

stack: 由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间 

heap: 需要程序员自己申请,并指明大小,在c中malloc函数 如p1 = (char *)malloc(10); 

在C++中用new运算符 如p2 = (char *)malloc(10); 但是注意p1、p2本身是在栈中的。 

2.2 申请后系统的响应 

栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。 

堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时, 会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。 

2.3申请大小的限制 

栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。 

堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。 

2.4申请效率的比较

栈由系统自动分配,速度较快。但程序员是无法控制的。 

堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.。

另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。 

2.5堆和栈中的存储内容 

栈: 在函数调用时,(1)第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后(2)是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是(3)函数中的局部变量。注意静态变量是不入栈的。 

当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。 

堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。 

2.6存取效率的比较 

char s1[] = "aaaaaaaaaaaaaaa"; 

char *s2 = "bbbbbbbbbbbbbbbbb"; 

aaaaaaaaaaa是在运行时刻赋值的; 而bbbbbbbbbbb是在编译时就确定的; 但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。 比如: 

2.7小结

堆和栈的区别可以用如下的比喻来看出:使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。 使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。 

windows进程中的内存结构

接触过编程的人都知道,高级语言都能通过变量名来访问内存中的数据。那么这些变量在内存中是如何存放的呢?程序又是如何使用这些变量的呢?下面就会对此进行深入的讨论。下文中的C语言代码如没有特别声明,默认都使用VC编译的release版。 

首先,来了解一下 C 语言的变量是如何在内存分部的。C 语言有全局变量(Global)、本地变量(Local),静态变量(Static)、寄存器变量(Regeister)。每种变量都有不同的分配方式。先来看下面这段代码: 

#include <stdio.h>

int g1=0, g2=0, g3=0;

int main()

{

static int s1=0, s2=0, s3=0;

int v1=0, v2=0, v3=0;

//打印出个变量的内存地址

printf("0x%08x\n",&v1);

printf("0x%08x\n",&v2);

printf("0x%08x\n\n",&v3);

 

printf("0x%08x\n",&g1);

printf("0x%08x\n",&g2);

printf("0x%08x\n\n",&g3);

 

printf("0x%08x\n",&s1);

printf("0x%08x\n",&s2);

printf("0x%08x\n\n",&s3);

return 0;

}

 

编译后的执行结果是: 

0x0012ff78 

0x0012ff7c 
0x0012ff80 

0x004068d0 

0x004068d4 
0x004068d8 

0x004068dc 

0x004068e0 
0x004068e4 

输出的结果就是变量的内存地址。其中v1,v2,v3是本地变量,g1,g2,g3是全局变量,s1,s2,s3是静态变量。你可以看到这些变量在内存是连续分布的,但是本地变量和全局变量分配的内存地址差了十万八千里,而全局变量和静态变量分配的内存是连续的。这是因为本地变量和全局/静态变量是分配在不同类型的内存区域中的结果。对于一个进程的内存空间而言,可以在逻辑上分成3个部份:代码区,静态数据区和动态数据区。动态数据区一般就是"堆栈"。"栈(stack)"和"堆(heap)"是两种不同的动态数据区,栈是一种线性结构,堆是一种链式结构。进程的每个线程都有私有的"栈",所以每个线程虽然代码一样,但本地变量的数据都是互不干扰。一个堆栈可以通过"基地址"和"栈顶"地址来描述。全局变量和静态变量分配在静态数据区,本地变量分配在动态数据区,即堆栈中。程序通过堆栈的基地址和偏移量来访问本地变量。 

———————┤低端内存区域 
│ …… │ 
——————— 
│ 动态数据区 │ 
——————— 
│ …… │ 
——————— 
│ 代码区 │ 
——————— 
│ 静态数据区 │ 
——————— 
│ …… │ 
———————┤高端内存区域 

堆栈是一个先进后出的数据结构,栈顶地址总是小于等于栈的基地址。我们可以先了解一下函数调用的过程,以便对堆栈在程序中的作用有更深入的了解。不同的语言有不同的函数调用规定,这些因素有参数的压入规则和堆栈的平衡。windows API的调用规则和ANSI C的函数调用规则是不一样的,前者由被调函数调整堆栈,后者由调用者调整堆栈。两者通过"__stdcall"和"__cdecl"前缀区分。先看下面这段代码: 

#include <stdio.h>

void __stdcall func(int param1,int param2,int param3)

{

int var1=param1;

int var2=param2;

int var3=param3;

printf("0x%08x\n",&m1); //打印出个变量的内存地址

printf("0x%08x\n",&m2);

printf("0x%08x\n\n",&m3);

printf("0x%08x\n",&var1);

printf("0x%08x\n",&var2);

printf("0x%08x\n\n",&var3);

return;

}

int main()

{

func(1,2,3);

return 0;

}

 

编译后的执行结果是: 

0x0012ff78 

0x0012ff7c 
0x0012ff80 

0x0012ff68 

0x0012ff6c 
0x0012ff70 

———————<—函数执行时的栈顶(ESP)、低端内存区域 
│ …… │ 
——————— 
│ var 1 │ 
——————— 
│ var 2 │ 
——————— 
│ var 3 │ 
——————— 
│ RET │ 
———————<—"__cdecl"函数返回后的栈顶(ESP) 
│ parameter 1 │ 
——————— 
│ parameter 2 │ 
——————— 
│ parameter 3 │ 
———————<—"__stdcall"函数返回后的栈顶(ESP) 
│ …… │ 
———————<—栈底(基地址 EBP)、高端内存区域 

 

上图就是函数调用过程中堆栈的样子了。首先,三个参数以从右到左的次序压入堆栈,先压"param3",再压"param2",最后压入"param1";然后压入函数的返回地址(RET),接着跳转到函数地址接着执行(这里要补充一点,介绍UNIX下的缓冲溢出原理的文章中都提到在压入RET后,继续压入当前EBP,然后用当前ESP代替EBP。然而,有一篇介绍windows下函数调用的文章中说,在windows下的函数调用也有这一步骤,但根据我的实际调试,并未发现这一步,这还可以从param3和var1之间只有4字节的间隙这点看出来);第三步,将栈顶(ESP)减去一个数,为本地变量分配内存空间,上例中是减去12字节(ESP=ESP-3*4,每个int变量占用4个字节);接着就初始化本地变量的内存空间。由于"__stdcall"调用由被调函数调整堆栈,所以在函数返回前要恢复堆栈,先回收本地变量占用的内存(ESP=ESP+3*4),然后取出返回地址,填入EIP寄存器,回收先前压入参数占用的内存(ESP=ESP+3*4),继续执行调用者的代码。参见下列汇编代码: 

;--------------func 函数的汇编代码------------------- 

:00401000 83EC0C sub esp, 0000000C //创建本地变量的内存空间 

:00401003 8B442410 mov eax, dword ptr [esp+10] 
:00401007 8B4C2414 mov ecx, dword ptr [esp+14] 
:0040100B 8B542418 mov edx, dword ptr [esp+18] 
:0040100F 89442400 mov dword ptr [esp], eax 
:00401013 8D442410 lea eax, dword ptr [esp+10] 
:00401017 894C2404 mov dword ptr [esp+04], ecx 

……………………(省略若干代码) 

:00401075 83C43C add esp, 0000003C ;恢复堆栈,回收本地变量的内存空间 

:00401078 C3 ret 000C ;函数返回,恢复参数占用的内存空间 
;如果是"__cdecl"的话,这里是"ret",堆栈将由调用者恢复 

;-------------------函数结束------------------------- 

;--------------主程序调用func函数的代码-------------- 

:00401080 6A03 push 00000003 //压入参数param3 

:00401082 6A02 push 00000002 //压入参数param2 
:00401084 6A01 push 00000001 //压入参数param1 
:00401086 E875FFFFFF call 00401000 //调用func函数 
;如果是"__cdecl"的话,将在这里恢复堆栈,"add esp, 0000000C" 

聪明的读者看到这里,差不多就明白缓冲溢出的原理了。先来看下面的代码: 

#include <stdio.h>

#include <string.h>

void __stdcall func()

{

char lpBuff[8]="\0";

strcat(lpBuff,"AAAAAAAAAAA");

return;

}

int main()

{

func();

return 0;

}

 

编译后执行一下回怎么样?哈,""0x00414141"指令引用的"0x00000000"内存。该内存不能为"read"。","非法操作"喽!"41"就是"A"的16进制的ASCII码了,那明显就是strcat这句出的问题了。"lpBuff"的大小只有8字节,算进结尾的\0,那strcat最多只能写入7个"A",但程序实际写入了11个"A"外加1个\0。再来看看上面那幅图,多出来的4个字节正好覆盖了RET的所在的内存空间,导致函数返回到一个错误的内存地址,执行了错误的指令。如果能精心构造这个字符串,使它分成三部分,前一部份仅仅是填充的无意义数据以达到溢出的目的,接着是一个覆盖RET的数据,紧接着是一段shellcode,那只要着个RET地址能指向这段shellcode的第一个指令,那函数返回时就能执行shellcode了。但是软件的不同版本和不同的运行环境都可能影响这段shellcode在内存中的位置,那么要构造这个RET是十分困难的。一般都在RET和shellcode之间填充大量的NOP指令,使得exploit有更强的通用性。 

———————<—低端内存区域 
│ …… │ 
———————<—由exploit填入数据的开始 
│ │ 
│ buffer │<—填入无用的数据 
│ │ 
——————— 
│ RET │<—指向shellcode,或NOP指令的范围 
——————— 
│ NOP │ 
│ …… │<—填入的NOP指令,是RET可指向的范围 
│ NOP │ 
——————— 
│ │ 
│ shellcode │ 
│ │ 
———————<—由exploit填入数据的结束 
│ …… │ 
———————<—高端内存区域 

windows下的动态数据除了可存放在栈中,还可以存放在堆中。了解C++的朋友都知道,C++可以使用new关键字来动态分配内存。来看下面的C++代码: 

#include <stdio.h> 

#include <iostream.h> 
#include <windows.h> 

void func() 

char *buffer=new char[128]; 
char bufflocal[128]; 
static char buffstatic[128]; 
printf("0x%08x\n",buffer); //打印堆中变量的内存地址 
printf("0x%08x\n",bufflocal); //打印本地变量的内存地址 
printf("0x%08x\n",buffstatic); //打印静态变量的内存地址 

void main() 

func(); 
return; 

程序执行结果为: 

0x004107d0 

0x0012ff04 
0x004068c0 

可以发现用new关键字分配的内存即不在栈中,也不在静态数据区。VC编译器是通过windows下的"堆(heap)"来实现new关键字的内存动态分配。在讲"堆"之前,先来了解一下和"堆"有关的几个API函数: 

HeapAlloc 在堆中申请内存空间 

HeapCreate 创建一个新的堆对象 
HeapDestroy 销毁一个堆对象 
HeapFree 释放申请的内存 
HeapWalk 枚举堆对象的所有内存块 
GetProcessHeap 取得进程的默认堆对象 
GetProcessHeaps 取得进程所有的堆对象 
LocalAlloc 
GlobalAlloc 

当进程初始化时,系统会自动为进程创建一个默认堆,这个堆默认所占内存的大小为1M。堆对象由系统进行管理,它在内存中以链式结构存在。通过下面的代码可以通过堆动态申请内存空间: 

HANDLE hHeap=GetProcessHeap(); 

char *buff=HeapAlloc(hHeap,0,8); 

其中hHeap是堆对象的句柄,buff是指向申请的内存空间的地址。那这个hHeap究竟是什么呢?它的值有什么意义吗?看看下面这段代码吧: 

#pragma comment(linker,"/entry:main") //定义程序的入口 

#include <windows.h> 

_CRTIMP int (__cdecl *printf)(const char *, ...); //定义STL函数printf 

/*--------------------------------------------------------------------------- 
写到这里,我们顺便来复习一下前面所讲的知识: 
(*注)printf函数是C语言的标准函数库中函数,VC的标准函数库由msvcrt.dll模块实现。 
由函数定义可见,printf的参数个数是可变的,函数内部无法预先知道调用者压入的参数个数,函数只能通过分析第一个参数字符串的格式来获得压入参数的信息,由于这里参数的个数是动态的,所以必须由调用者来平衡堆栈,这里便使用了__cdecl调用规则。BTW,Windows系统的API函数基本上是__stdcall调用形式,只有一个API例外,那就是wsprintf,它使用__cdecl调用规则,同printf函数一样,这是由于它的参数个数是可变的缘故。 
---------------------------------------------------------------------------*/ 
void main() 
HANDLE hHeap=GetProcessHeap(); 
char *buff=HeapAlloc(hHeap,0,0x10); 
char *buff2=HeapAlloc(hHeap,0,0x10); 
HMODULE hMsvcrt=LoadLibrary("msvcrt.dll"); 
printf=(void *)GetProcAddress(hMsvcrt,"printf"); 
printf("0x%08x\n",hHeap); 
printf("0x%08x\n",buff); 
printf("0x%08x\n\n",buff2); 

执行结果为: 

0x00130000 

0x00133100 
0x00133118 

hHeap的值怎么和那个buff的值那么接近呢?其实hHeap这个句柄就是指向HEAP首部的地址。在进程的用户区存着一个叫PEB(进程环境块)的结构,这个结构中存放着一些有关进程的重要信息,其中在PEB首地址偏移0x18处存放的ProcessHeap就是进程默认堆的地址,而偏移0x90处存放了指向进程所有堆的地址列表的指针。windows有很多API都使用进程的默认堆来存放动态数据,如windows 2000下的所有ANSI版本的函数都是在默认堆中申请内存来转换ANSI字符串到Unicode字符串的。对一个堆的访问是顺序进行的,同一时刻只能有一个线程访问堆中的数据,当多个线程同时有访问要求时,只能排队等待,这样便造成程序执行效率下降。 

最后来说说内存中的数据对齐。所位数据对齐,是指数据所在的内存地址必须是该数据长度的整数倍,DWORD数据的内存起始地址能被4除尽,WORD数据的内存起始地址能被2除尽,x86 CPU能直接访问对齐的数据,当他试图访问一个未对齐的数据时,会在内部进行一系列的调整,这些调整对于程序来说是透明的,但是会降低运行速度,所以编译器在编译程序时会尽量保证数据对齐。同样一段代码,我们来看看用VC、Dev-C++和lcc三个不同编译器编译出来的程序的执行结果: 

#include <stdio.h> 

int main() 

int a; 
char b; 
int c; 
printf("0x%08x\n",&a); 
printf("0x%08x\n",&b); 
printf("0x%08x\n",&c); 
return 0; 

这是用VC编译后的执行结果: 

0x0012ff7c 
0x0012ff7b 
0x0012ff80 
变量在内存中的顺序:b(1字节)-a(4字节)-c(4字节)。 

这是用Dev-C++编译后的执行结果: 

0x0022ff7c 
0x0022ff7b 
0x0022ff74 
变量在内存中的顺序:c(4字节)-中间相隔3字节-b(占1字节)-a(4字节)。 

这是用lcc编译后的执行结果: 

0x0012ff6c 
0x0012ff6b 
0x0012ff64 
变量在内存中的顺序:同上。 

三个编译器都做到了数据对齐,但是后两个编译器显然没VC"聪明",让一个char占了4字节,浪费内存哦。 

转载于:https://www.cnblogs.com/zcmaker/archive/2012/11/17/2775216.html

你可能感兴趣的文章
Java反射简介
查看>>
react脚手架应用以及iview安装
查看>>
shell学习之用户管理和文件属性
查看>>
day8--socket网络编程进阶
查看>>
node mysql模块写入中文字符时的乱码问题
查看>>
仍需"敬请期待"的微信沃卡
查看>>
分析Ajax爬取今日头条街拍美图
查看>>
内存分布简视图
查看>>
POJ 2918 求解数独
查看>>
如何学习虚拟现实技术vr? vr初级入门教程开始
查看>>
第4 章序列的应用
查看>>
Mysql explain
查看>>
初识闭包
查看>>
java tcp socket实例
查看>>
011 指针的算术运算
查看>>
hdu1874畅通工程续
查看>>
rails 字符串 转化为 html
查看>>
java-学习8
查看>>
AOP动态代理
查看>>
Oracle序列
查看>>